Houd er rekening mee dat als u jonger bent dan 18 jaar, u geen toegang heeft tot deze site.
Uitchecken
Paystack
Dewayne Bills, 19
populariteit: Heel laag
0
Visitors
0
sympathieën
0
vrienden
Sociale accounts
Wat betreft Dewayne Bills
Dianabol Only Cycle Dianabol Only Cycle
Answer – General statement
Let \(k\geq 1\) be an integer and let
[ n_1,\,n_2,\,\dots ,\,n_k\in \mathbb Z ]
be any \(k\) integers.
For every real number \(X>0\) there exists a prime \(p>X\) such that
[ p\mid (\,n_i+1\,)\quad\textfor some i\;(1\le i\le k). ]
Equivalently, the set
[ \bigcup_i=1^k\,\textprimes dividing (n_i+1)\, ]
is infinite.
---
Proof
Let \(P=\prod_i=1^k(n_i+1)\).
Choose an integer \(m\) larger than any prescribed bound.
C>1\) there exists a \(k\)-digit number with all digits different. The construction of the sequence \(\,N_k\,\) guarantees that such numbers exist for all values of \(k\).
Hence there are infinitely many integers whose decimal representation contains only distinct digits.
These are precisely the numbers \(1,2,\dots ,9,10,12,\dots ,98,102, 103,\dots \), and so on.
The set of such numbers is not a perfect arithmetic progression (there are gaps, e.g. between \(99\) and \(100\)). In base‑\(b\) there can be at most \(b^\,b\) distinct‑digit numbers. These integers are sometimes called pandigital* in the sense of using each digit only once, but not necessarily all digits.
The proof above shows that, for any finite alphabet, one can construct infinitely many words with no repeated symbols.
land
Algeria
Profielinformatie
basis-
Geslacht
Mannetje
Voorkeurstaal
Engels
looks
Hoogte
183cm
Haarkleur
Zwart
Premium gebruikers
Rapporteer gebruiker.
Verzend geschenkkosten 50 credits
Jouw Volts Creditsbalans
0 credits
babbelen
Je hebt je dagelijkse limiet bereikt, je kunt na afloop chatten met nieuwe mensen , kan niet wachten? deze service kost je 30 credits.