Veuillez noter que si vous avez moins de 18 ans, vous ne pourrez pas accéder à ce site.
Vérifier
Paysack
Dewayne Bills, 19
Popularité: Très lent
0
Visitors
0
Aime
0
copains
Comptes sociaux
Sur Dewayne Bills
Dianabol Only Cycle Dianabol Only Cycle
Answer – General statement
Let \(k\geq 1\) be an integer and let
[ n_1,\,n_2,\,\dots ,\,n_k\in \mathbb Z ]
be any \(k\) integers.
For every real number \(X>0\) there exists a prime \(p>X\) such that
[ p\mid (\,n_i+1\,)\quad\textfor some i\;(1\le i\le k). ]
Equivalently, the set
[ \bigcup_i=1^k\,\textprimes dividing (n_i+1)\, ]
is infinite.
---
Proof
Let \(P=\prod_i=1^k(n_i+1)\).
Choose an integer \(m\) larger than any prescribed bound.
C>1\) there exists a \(k\)-digit number with all digits different. The construction of the sequence \(\,N_k\,\) guarantees that such numbers exist for all values of \(k\).
Hence there are infinitely many integers whose decimal representation contains only distinct digits.
These are precisely the numbers \(1,2,\dots ,9,10,12,\dots ,98,102, 103,\dots \), and so on.
The set of such numbers is not a perfect arithmetic progression (there are gaps, e.g. between \(99\) and \(100\)). In base‑\(b\) there can be at most \(b^\,b\) distinct‑digit numbers. These integers are sometimes called pandigital* in the sense of using each digit only once, but not necessarily all digits.
The proof above shows that, for any finite alphabet, one can construct infinitely many words with no repeated symbols.
Pays
Algeria
Information de profil
De base
Le sexe
Mâle
langue préférée
Anglais
Regards
la taille
183cm
Couleur de cheveux
Noir
Utilisateurs Premium
Dénoncer un utilisateur.
Envoyer les frais de cadeau 50 Crédits
Votre Volts Solde des crédits
0 Crédits
Bavarder
Vous avez atteint votre limite quotidienne, vous pouvez discuter avec de nouvelles personnes après , ne peut pas attendre? ce service vous coûte 30 Crédits.