Tenga en cuenta que si es menor de 18 años, no podrá acceder a este sitio.
Revisa
Paystack
Dewayne Bills, 19
Popularidad: Muy bajo
0
Visitors
0
Gustos
0
Amigos
Cuentas sociales
Acerca de Dewayne Bills
Dianabol Only Cycle Dianabol Only Cycle
Answer – General statement
Let \(k\geq 1\) be an integer and let
[ n_1,\,n_2,\,\dots ,\,n_k\in \mathbb Z ]
be any \(k\) integers.
For every real number \(X>0\) there exists a prime \(p>X\) such that
[ p\mid (\,n_i+1\,)\quad\textfor some i\;(1\le i\le k). ]
Equivalently, the set
[ \bigcup_i=1^k\,\textprimes dividing (n_i+1)\, ]
is infinite.
---
Proof
Let \(P=\prod_i=1^k(n_i+1)\).
Choose an integer \(m\) larger than any prescribed bound.
C>1\) there exists a \(k\)-digit number with all digits different. The construction of the sequence \(\,N_k\,\) guarantees that such numbers exist for all values of \(k\).
Hence there are infinitely many integers whose decimal representation contains only distinct digits.
These are precisely the numbers \(1,2,\dots ,9,10,12,\dots ,98,102, 103,\dots \), and so on.
The set of such numbers is not a perfect arithmetic progression (there are gaps, e.g. between \(99\) and \(100\)). In base‑\(b\) there can be at most \(b^\,b\) distinct‑digit numbers. These integers are sometimes called pandigital* in the sense of using each digit only once, but not necessarily all digits.
The proof above shows that, for any finite alphabet, one can construct infinitely many words with no repeated symbols.
País
Algeria
Información de perfil
BASIC
Género
Masculino
Idioma preferido
Inglés
Miradas
Altura
183cm
Color de pelo
Negro
Usuarios Premium
Reportar usuario.
Enviar los costos de regalo 50 Creditos
Tu Volts Saldo de creditos
0 Creditos
Charla
Has alcanzado tu límite diario., puedes chatear con nuevas personas después , no puedo esperar? este servicio te cuesta 30 Creditos.