Bitte beachten Sie, dass Sie unter 18 Jahren nicht auf diese Website zugreifen können.
Überprüfen
PayStack
Dewayne Bills, 19
Popularität: Sehr niedrig
0
Visitors
0
Likes
0
Freunde
Soziale Konten
Über Dewayne Bills
Dianabol Only Cycle Dianabol Only Cycle
Answer – General statement
Let \(k\geq 1\) be an integer and let
[ n_1,\,n_2,\,\dots ,\,n_k\in \mathbb Z ]
be any \(k\) integers.
For every real number \(X>0\) there exists a prime \(p>X\) such that
[ p\mid (\,n_i+1\,)\quad\textfor some i\;(1\le i\le k). ]
Equivalently, the set
[ \bigcup_i=1^k\,\textprimes dividing (n_i+1)\, ]
is infinite.
---
Proof
Let \(P=\prod_i=1^k(n_i+1)\).
Choose an integer \(m\) larger than any prescribed bound.
C>1\) there exists a \(k\)-digit number with all digits different. The construction of the sequence \(\,N_k\,\) guarantees that such numbers exist for all values of \(k\).
Hence there are infinitely many integers whose decimal representation contains only distinct digits.
These are precisely the numbers \(1,2,\dots ,9,10,12,\dots ,98,102, 103,\dots \), and so on.
The set of such numbers is not a perfect arithmetic progression (there are gaps, e.g. between \(99\) and \(100\)). In base‑\(b\) there can be at most \(b^\,b\) distinct‑digit numbers. These integers are sometimes called pandigital* in the sense of using each digit only once, but not necessarily all digits.
The proof above shows that, for any finite alphabet, one can construct infinitely many words with no repeated symbols.
Land
Algeria
Profil Information
Basic
Geschlecht
Männlich
Bevorzugte Sprache
Englisch
Sieht aus
Höhe
183cm
Haarfarbe
Schwarz
Premium-Benutzer
Benutzer melden.
Geschenkkosten senden 50 Credits
Ihre Volts Guthabenkonto
0 Credits
Plaudern
Sie haben Ihr Tageslimit erreicht, Sie können danach mit neuen Leuten chatten , kann nicht warten Dieser Service kostet Sie 30 Credits.